Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Periodical cicadas (Hemiptera:Magicicada) have coevolved with obligate bacteriome-inhabiting microbial symbionts, yet little is known about gut microbial symbiont composition or differences in composition among allochronicMagicicadabroods (year classes) which emerge parapatrically or allopatrically in the eastern United States. Here, 16S rRNA amplicon sequencing was performed to determine gut bacterial community profiles of three periodical broods, including II (Connecticut and Virginia, 2013), VI (North Carolina, 2017), and X (Maryland, 2021, and an early emerging nymph collected in Ohio, 2017). Results showed similarities among all nymphal gut microbiomes and between morphologically distinct 17-yearMagicicada, namelyMagicicada septendecim(Broods II and VI) and 17-yearMagicicada cassini(Brood X) providing evidence of a core microbiome, distinct from the microbiome of burrow soil inhabited by the nymphs. Generally, phylaBacteroidetes[Bacteroidota] (> 50% relative abundance),Actinobacteria[Actinomycetota], orProteobacteria[Pseudomonadota] represented the core.Acidobacteriaand generaCupriavidus,Mesorhizobium, andDelftiawere prevalent in nymphs but less frequent in adults. The primary obligate endosymbiont,Sulcia(Bacteroidetes), was dominant amongst core genera detected.Chryseobacteriumwere common in Broods VI and X.Chitinophaga, Arthrobacter, andRenibacteriumwere common in Brood X, andPedobacterwere common to nymphs of Broods II and VI. Further taxonomic assignment of unclassifiedAlphaproteobacteriasequencing reads allowed for detection of multiple copies of theHodgkinia16S rRNA gene, distinguishable as separate operational taxonomic units present simultaneously. As major emergences of the broods examined here occur at 17-year intervals, this study will provide a valuable comparative baseline in this era of a changing climate.more » « less
-
Johnson, Karyn N. (Ed.)ABSTRACT Leeches are found in terrestrial, aquatic, and marine habitats on all continents. Sanguivorous leeches have been used in medicine for millennia. Modern scientific uses include studies of neurons, anticoagulants, and gut microbial symbioses. Hirudo verbana , the European medicinal leech, maintains a gut community dominated by two bacterial symbionts, Aeromonas veronii and Mucinivorans hirudinis , which sometimes account for as much as 97% of the total crop microbiota. The highly simplified gut anatomy and microbiome of H. verbana make it an excellent model organism for studying gut microbial dynamics. The North American medicinal leech, Macrobdella decora , is a hirudinid leech native to Canada and the northern United States. In this study, we show that M. decora symbiont communities are very similar to those in H. verbana. We performed an extensive study using field-caught M. decora and purchased H. verbana from two suppliers. Deep sequencing of the V4 region of the 16S rRNA gene allowed us to determine that the core microbiome of M. decora consists of Bacteroides , Aeromonas, Proteocatella , and Butyricicoccus. The analysis revealed that the compositions of the gut microbiomes of the two leech species were significantly different at all taxonomic levels. The R 2 value was highest at the genus and amplicon sequence variant (ASV) levels and much lower at the phylum, class, and order levels. The gut and bladder microbial communities were distinct. We propose that M. decora is an alternative to H. verbana for studies of wild-caught animals and provide evidence for the conservation of digestive-tract and bladder symbionts in annelid models. IMPORTANCE Building evidence implicates the gut microbiome in critical animal functions such as regulating digestion, nutrition, immune regulation, and development. Simplified, phylogenetically diverse models for hypothesis testing are necessary because of the difficulty of assigning causative relationships in complex gut microbiomes. Previous research used Hirudo verbana as a tractable animal model of digestive-tract symbioses. Our data show that Macrobdella decora may work just as well without the drawback of being an endangered organism and with the added advantage of easy access to field-caught specimens. The similarity of the microbial community structures of species from two different continents reveals the highly conserved nature of the microbial symbionts in sanguivorous leeches.more » « less
-
Dunning Hotopp, Julie C. (Ed.)ABSTRACT Aeromonas veronii strain Hm21 was isolated from the medicinal leech Hirudo verbana and is used for genetic studies. We present here the 4.71-Mbp genome with a 56-kb plasmid and identify the mutations present in strains commonly used for genetic engineering.more » « less
-
ABSTRACT Microbes live in complex microniches within host tissues, but how symbiotic partners communicate to create such niches during development remains largely unexplored. Using confocal microscopy and symbiont genetics, we characterized the shaping of host microenvironments during light organ colonization of the squid Euprymna scolopes by the bacterium Vibrio fischeri . During embryogenesis, three pairs of invaginations form sequentially on the organ’s surface, producing pores that lead to interior compressed tubules at different stages of development. After hatching, these areas expand, allowing V. fischeri cells to enter and migrate ∼120 μm through three anatomically distinct regions before reaching blind-ended crypt spaces. A dynamic gatekeeper, or bottleneck, connects these crypts with the migration path. Once V. fischeri cells have entered the crypts, the bottlenecks narrow, and colonization by the symbiont population becomes spatially restricted. The actual timing of constriction and restriction varies with crypt maturity and with different V. fischeri strains. Subsequently, starting with the first dawn following colonization, the bottleneck controls a lifelong cycle of dawn-triggered expulsions of most of the symbionts into the environment and a subsequent regrowth in the crypts. Unlike other developmental phenotypes, bottleneck constriction is not induced by known microbe-associated molecular patterns (MAMPs) or by V. fischeri - produced bioluminescence, but it does require metabolically active symbionts. Further, while symbionts in the most mature crypts have a higher proportion of live cells and a greater likelihood of expulsion at dawn, they have a lower resistance to antibiotics. The overall dynamics of these distinct microenvironments reflect the complexity of the host-symbiont dialogue. IMPORTANCE The complexity, inaccessibility, and time scales of initial colonization of most animal microbiomes present challenges for the characterization of how the bacterial symbionts influence the form and function of tissues in the minutes to hours following the initial interaction of the partners. Here, we use the naturally occurring binary squid-vibrio association to explore this phenomenon. Imaging of the spatiotemporal landscape of this symbiosis during its onset provides a window into the impact of differences in both host-tissue maturation and symbiont strain phenotypes on the establishment of a dynamically stable symbiotic system. These data provide evidence that the symbionts shape the host-tissue landscape and that tissue maturation impacts the influence of strain-level differences on the daily rhythms of the symbiosis, the competitiveness for colonization, and antibiotic sensitivity.more » « less
An official website of the United States government
